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High-resolution direct numerical simulations of two-dimensional turbulence in
stationary conditions are presented. The development of an energy–enstrophy double
cascade is investigated and its statistics found to be compatible with the classical
Kraichnan theory in the limit of extended inertial ranges. The analysis of the joint
distribution of energy and enstrophy fluxes in physical space reveals a small value
of cross-correlation. This result supports many experimental and numerical studies
where only one cascade is generated.

1. Introduction
The existence of two quadratic inviscid invariants is the most distinguishing feature

of Navier–Stokes equations in two dimensions. On this basis, in a remarkable
paper, Kraichnan (1967) predicted the double cascade scenario for two-dimensional
turbulence: an inverse cascade of kinetic energy E = (1/2)〈v2〉 to large scales and a
direct cascade of enstrophy Z = (1/2)〈ω2〉 to small scales (ω = ∇ × v is the vorticity).
In statistically stationary conditions, when the turbulent flow is sustained by an
external forcing acting on a typical scale �f a double cascade develops. According
to the Kraichnan theory, at large scales, i.e. wavenumbers k � kf ∼ �−1

f , the energy
spectrum has the form E(k) � ε2/3k−5/3, while at small scales, k � kf , the prediction is
E(k) � η2/3k−3, with a possible logarithmic correction (Kraichnan 1971). Here ε and
η � k2

f ε are respectively the energy and the enstrophy injection rate.
Despite the importance of two-dimensional turbulence as a model for many physical

flows (see Kraichnan & Montgomery 1980; Tabeling 2002) and, more generally, for
non-equilibrium statistical systems (Bernard et al. 2006), clear evidence of the two
coexisting cascades on an extended range of scales is still lacking. The inverse energy
cascade has been observed in many laboratory experiments, for example by Paret &
Tabeling (1997), and in numerical simulations (see Siggia & Aref 1981; Frisch &
Sulem 1984; Smith & Yakhot 1993; Borue 1994) with a statistical accuracy which has
revealed the absence of intermittency corrections to dimensional scaling, as shown
by Boffetta, Celani & Vergassola (2000). For the direct cascade, earlier numerical
simulations, for example by Legras, Santangelo & Benzi (1988), and experiments
(see Kellay, Wu & Goldburg 1995) report spectra slightly steeper than k−3, while
more recent investigations at higher resolution are closer to Kraichnan’s prediction
(Borue 1993; Gotoh 1998; Lindborg & Alvelius 2000; Pasquero & Falkovich 2002).
It is important to note that Nam et al. (2000) have shown that in the presence of a
large-scale drag force (always present in experiments and sometimes also in numerics)
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Label N ν α �f /�d εα/εI εν/εI ηα/ηI ην/ηI T /τL

A 2048 2 × 10−5 0.015 26.2 0.54 0.46 0.03 0.97 6.3
B 4096 5 × 10−6 0.024 52.3 0.82 0.18 0.08 0.92 5.9
C 8192 2 × 10−6 0.025 80.5 0.92 0.08 0.10 0.90 2.6
D 16384 1 × 10−6 0.03 114.2 0.95 0.05 0.12 0.88 0.9

Table 1. Parameters of the simulations. N is spatial resolution, ν viscosity, α friction, L box
size, �f = L/100 forcing scale, �d = ν1/2/η1/6

ν enstrophy dissipative scale, εI energy injection rate,
εν viscous energy dissipation rate, εα friction energy dissipation rate, ηI enstrophy injection
rate, ην viscous enstrophy dissipation rate, ηα friction enstrophy dissipation rate, T averaging
time, τL = E/εα large-scale eddy turnover time.

a correction to the classical exponent −3 is expected, clearly observed in simulations
also by Boffetta et al. (2002).

Two recent experimental papers by Rutgers (1998) and Bruneau & Kellay (2005)
have been devoted to the study of the double cascade. Their results are substantially
consistent with the classical scenario of Kraichnan, although the extension of the
inertial range (in particular for the inverse cascade) is limited and the flow is
inhomogeneous at the scales of the inverse cascade. Here we present high-resolution
(up to 16 3842) direct numerical simulations of forced two-dimensional Navier–Stokes
equations which reproduce with good accuracy both cascades simultaneously. Most
of the injected energy flows to large scales (where it is removed by friction dumping)
while enstrophy cascades to small scales (there removed by viscosity). We find strong
numerical indications that the classical Kraichnan scenario is recovered in the limit
of two extended inertial ranges, although we are unable to rule out, at the present
resolution, the possibility of corrections to the direct cascade. By looking at the
two fluxes in physical space, we find a relatively small value of the cross-correlation
between them. This result suggests the possibility of generating a single cascade,
independently of the presence of the second inertial range.

2. High-resolution direct numerical simulations
The two-dimensional Navier–Stokes equation for the vorticity field is

∂tω + v · ∇ω = ν	ω − αω + 	f, (2.1)

where ν is the kinematic viscosity and α is a linear friction coefficient (representing
bottom friction or air friction) necessary to obtain a stationary state. The forcing term
f is assumed to be short correlated in time (in order to control the injection rates)
and narrow banded in space. Specifically, we use a Gaussian forcing with correlation
function 〈f (r, t)f (0, 0)〉 = Fδ(t)�2

f exp(−(r/�f )2/2), where F is a constant, in most of
the simulations. In order to check the independence of the results of the details of the
forcing, for the simulations at resolution 16 384 we use a different forcing restricted
to a narrow shell of wavenumbers. Numerical integration of (2.1) is performed by a
pseudo-spectral, fully dealiased, parallel code on a doubly periodic square domain of
side L at resolution N2. After the system has reached a stationary state (i.e. constant
value of kinetic energy), statistical quantities are computing by averaging over several
large-scale eddy turnover times (only over a fraction of eddy turnover time for
the 16 384 run because of limited resources). Table 1 reports the most important
parameters of our simulations.
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Figure 1. (a) Energy and (b) enstrophy fluxes in Fourier space at resolutions 2048 (A), 4096
(B), 8192 (C) and 16384 (D). At resolution 16384 fluxes are computed on a single frame.

One of the simplest pieces of information which can be obtained from table 1 is
related to the energy–enstrophy balance. At N = 2048 only about half of the energy
injected is transferred to large scales where it is removed by friction at a rate εα = 2αE.
This fraction increases with the resolution and becomes about 95 % for the N = 16386
run. The remaining energy injected is dissipated by viscosity at scales comparable with
the forcing scale and at a rate proportional to ν (which thus decreases on increasing
the resolution).

Most of the enstrophy (around 90 %) follows the direct cascade to small scales,
where it is dissipated by viscosity. We observe a moderate increase of the large-scale
enstrophy dissipation ηα on increasing the resolution: this is a finite-size effect due the
increase of α with N (see table 1) necessary to keep the friction scale �α � ε1/2

α α−3/2

constant with increasing εα .
In figure 1 we plot the fluxes of energy and enstrophy in wavenumber space.

Observe that because we change the resolution while keeping the ratio L/�f constant,
the only effect of reducing the grid size on the inverse cascade is the decrease of
the energy transferred to large scales (being εα = εI − εν with εν proportional to ν)
while the extent of the inertial range is almost unaffected. The behaviour of the fluxes
around k � kf depends on the details of the injection: the transition from zero to
negative (positive) energy (enstrophy) flux is sharp in the case of forcing for a narrow
band of wavenumber (run D) while it is more smooth for the Gaussian forcing
which is active on more scales. Fluctuations observed in the energy flux for run D
are a consequence of the short time statistics in this case. These results confirm the
robustness of the energy inertial range regardless of the viscous dissipative scale, a
further justification of many simulations of the inverse cascade in which, because of
the limited resolution, the forcing scale is very close to the dissipative scale.

Unlike the inverse cascade, the direct enstrophy cascade is strongly affected by finite
resolution effects. This is not a surprise because, by keeping �f fixed, the extent of the
direct cascade is simply proportional to N . As shown in figure 1, we observe a range
of wavenumbers with almost constant flux ΠZ(k) only for the runs with N � 8192.

Figure 2 shows the energy spectra computed for the different runs. We remark
again that the only effect of finite resolution on the inverse cascade is the reduction
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Figure 2. Energy spectra for the two simulations for the different resolutions (labels as in
figure 1). Dashed and dotted lines represent the two predictions Ck−5/3 with C = 6 and k−3

respectively. Inset: correction δ to the Kraichnan exponent −3 as a function of viscosity,
computed by fitting the spectra with a power law k−(3+δ) in the range 100 � k � 400.

of the energy transferred to large scales, while the Kolmogorov scaling k−5/3 is always
observed with a Kolmogorov constant C � 6, in agreement with Boffetta et al. (2000)
and virtually independent of resolution. The effect of finite resolution on the enstrophy
cascade range is, of course, more dramatic. We observe here a significant correction
to the Kraichnan spectrum k−3 even for the 16 384 run, where we measure a scaling
exponents close to −3.6. We note that a similar steepening of the spectrum has been
observed even for simulations with a more resolved direct cascade range (here we
have kmax/kf � 55 at the highest resolution). Despite these difficulties, there is a clear
indication that the correction to the exponent is a finite-size effect which eventually
disappears on increasing the extent of the inertial range (see inset of figure 2). The
conclusion, therefore, is that a k−3 spectrum in stationary solutions of (2.1) could
be achieved only by taking simultaneously the limits L/�f → ∞ and �f /�d → ∞ (i.e.
vanishing α and ν).

3. Analysis of fluxes in physical space
A better understanding of the physical mechanism at the basis of the cascades can

be obtained by looking at the distribution of fluxes in space. This can be obtained
by using a filtering procedure recently introduced and applied separately to the direct
cascade by Chen et al. (2003) and to the inverse cascade by Chen et al. (2006).
Thanks to the resolution of the present simulations, we are able to analyse both
cascades jointly and also the correlation between them. Following Chen et al. (2003),
we introduce a large-scale vorticity field ωr ≡ Gr �ω obtained from the convolution
of ω with a Gaussian filter Gr , and a large-scale velocity field vr ≡ Gr � v. From
these definitions, balance equations for the large-scale energy er (x, t) = (1/2)|vr |2 and
enstrophy zr (x, t) = (1/2)ω2

r densities are easily written (with a compact notation):

∂t (er, zr ) + ∇ · J (e,r)
r = −Π (e,r)

r − D(e,r)
r + F (e,r)

r (3.1)
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Figure 3. Average energy (lower, continuous) and enstrophy (upper, dotted) fluxes in physical
space at resolution N = 8192. The energy flux is multiplied by a factor k2

f = 104 for better
visualization.

where J (e,z)
r represent the transport of large-scale energy and enstrophy, and D(e,z)

r and
F (e,r)

r represent the large-scale dissipation and forcing. The energy/enstrophy fluxes
Π (e,z)

r (x, t), representing the local transfer of energy/enstrophy from large scale to
scales smaller than r , are given by

Π (e)
r (x, t) ≡ −(ταβ)r∇α(vβ)r , (3.2)

Π (z)
r (x, t) ≡ −(σα)r∇αωr, (3.3)

where (ταβ)r = (vαvβ)r − (vα)r (vβ)r and (σα)r =(vαω)r − (vα)rωr .
Fluxes (3.2) and (3.3) are expected to have a non-zero spatial mean in the inertial

range of scales of irreversible turbulent cascades: in particular a mean negative energy
flux for r > �f (inverse cascade) and a mean positive enstrophy flux for r < �f (direct
cascade). Figure 3 shows the physical fluxes 〈Π (e,z)

r 〉 averaged over space and time, as
functions of the scale r . The two cascades are evident although, as a consequence of
the filtering procedure, the range of constant flux is apparently reduced with respect
to the spectral case for both cascades (see figure 1).

Local fluxes are strongly inhomogeneous in physical space: there are relatively
small regions of intense (positive and negative) flux in both the energy and enstrophy
inertial ranges. Figure 4 shows two snapshots of the energy and enstrophy fluxes,
computed from the same vorticity field at two different scales, r1 = 0.025L and
r2 = 0.0025L corresponding to the minimum of energy flux and the maximum of
enstrophy flux respectively (see figure 3). Interesting information, obtained from
figure 4 at a qualitative level, is that the most intense energy and enstrophy fluxes
appear in different physical regions without any apparent correlation.

Figure 4 shows that both positive and negative fluxes are observed: locally both
energy and enstrophy can go to smaller or larger scales. In figure 5 the probability
density function of the two fluxes is plotted. As observed in Chen et al. (2003, 2006), the
shapes of the p.d.f.’s are nearly symmetric, confirming the qualitative picture inferred
from figure 4. The mean value in both cases is the result of strong cancellations as
its ratio with the standard deviation is −0.22 for the energy flux and 0.16 for the
enstrophy flux. The skewness is also small, about −0.30 and 3.2 for the energy and
enstrophy fluxes respectively.
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Figure 4. Snapshot of energy flux Π
(e)
r1 (left) and enstrophy flux Π

(z)
r2 (right) from the same

vorticity field. Energy flux is computed at scale r1 = 0.025L and enstrophy flux at r2 = 0.0025L,
roughly corresponding to the minimum and maximum in figure 3. White and black correspond
to positive and negative values respectively.
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Figure 5. Probability density function of (a) energy Π
(e)
r1 and (b) enstrophy Π

(z)
r2 fluxes

normalized with their standard deviations. Resolution is N = 8192, filtering scales are r1 =
0.025L and r2 = 0.0025L.

Figure 6 shows the joint probability density function p(Π (e)
r1

, Π (z)
r2

) computed at the
same scales r1 and r2 used in figure 4. This p.d.f. is not far from the product of
the marginal distributions shown in figure 5, a condition for independence. Indeed,
the correlation coefficient between Π (e)

r1
and Π (z)

r2
is only C(r1, r2) � −0.15. Of course,

it is very different if we consider the correlation at the same scale, for which we find
C(r1, r1) � C(r2, r2) � −0.9 despite the fact that in this case one of the two fluxes has
a mean close to zero. A possible interpretation of the observed small value of the
correlation is the classical picture of independence of the two cascades, here obtained
at a local level.
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Figure 6. Joint probability density function p(Π (e)
r1 ,Π

(z)
r2 ) of energy and enstrophy fluxes.

Scales r1 and r2 as in figure 5. Contours are plotted on a logarithmic scale while fluxes
are normalized with their standard deviations. Contour levels are (from outside to inside):
2.7 × 10−7, 2.0 × 10−6, 1.5 × 10−5, 1.0 × 10−4, 8.0 × 10−4, 6.0 × 10−3, 4.4 × 10−2, 0.32.

4. Conclusions
In conclusion, we have presented a statistical analysis of high-resolution direct

numerical simulations of two-dimensional Navier–Stokes equations. By increasing
the resolution, most of the energy (enstrophy) flows to large (small) scales and the
energy spectrum develops two power-law scaling ranges, in agreement with the double
cascade scenario predicted by Kraichnan 40 years ago.

Simulations were performed on the IBM-CLX cluster of Cineca (Bologna, Italy)
and on the Turbofarm cluster at the INFN computing centre in Torino.
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